
 

 

 

 

 

 

Department of Computer Science and Engineering (AI&ML) 

 

OPERATING SYSTEM   
LAB MANUAL 

 

Regulation 

PR24 

 

Class: II B.Tech I Semester 

 

 
Prepared by 

M.SREE PAVANI 

Assistant Professor 

 

 

 

 

 

 

 

      LAB FACULTY               HOD    PRINCIPAL 
 

 

 

 

 



 

 

 

 

 

 

 

 

VISION OF THE INSTITUTE 

 

 To emerge as a global leader in imparting quality technical education emphasizing ethical 

values for the betterment of the society. 

 

MISSION OF THE INSTITUTE 

 To create an excellent teaching learning environment and inculcate the aptitude for research. 

 To establish centers of excellence through collaborative initiatives. 

 To empower the student community by developing creativity and innovation. 

 

Proposed Vision and Mission of the Department 

 

VISION OF THE DEPARTMENT 

 

 To become a leading centre of excellence in Artificial Intelligence and Machine Learning by 

fostering innovation, research, and collaboration in diverse areas of computer science. We 

aim to address global challenges and emerging societal needs through advanced education, 

cutting-edge technologies, and impactful solutions in AI and ML. 

 

MISSION OF THE DEPARTMENT 

 To equip students with the knowledge and skills to solve complex, real-world problems in 

multidisciplinary fields using AI and ML technologies. 

 To foster strong domain expertise and research capabilities, enabling students to pursue 

challenging careers and advanced education in AI and ML. 

 To provide students with a strong sense of ethics, professionalism, and a desire for lifelong 

learning, enabling them to make significant contributions to both the field and society. 

 

 

 



 

 

 

 

 

 

PROGRAM EDUCATIONAL OBJECTIVES (PEOs) 

The Computer Science and Engineering – Data Science graduate will: 

PEO Statements 

 

PEO1 

Graduates will be prepared for a successful career in Computer Science 
discipline and related industry to meet the needs of the nation and leading 
industries and also to excel in postgraduate programs. 

PEO2 
 Graduates will continue to learn and apply the acquired knowledge to solve 

Engineering problems and appreciation of the arts, humanities and social 

sciences. 

 

PEO3 
Graduates will have good and broad scientific and engineering knowledgebase 

so as to comprehend, analyze, design and create novel products and solutions 

for real-time applications. 

 

   PEO4 

Graduates will understand professional and ethical responsibility, develop 

leadership, utilize membership opportunities, and develop effective 

communication skills, teamwork skills, multidisciplinary approach and life-long 

learning required for a successful professional career. 

 

 

PROGRAM SPECIFIC OUTCOMES (PSOs) 

 

The Computer Science and Engineering – Data Science graduate will be able to: 

PSOs Statements 

PSO1 Expertise in different aspects and appropriate models of Data Science and use 

large data sets to cater for the growing demand for data scientists and engineers 

in industry. 

PSO2 Apply the principles and techniques of database design, administration, and 

implementation to enhance data collection capabilities and decision-support 

systems. 

 

 

 

 

 

 

 



 

  

 

 

 

 

 Program outcomes: 
 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 
fundamentals, and an engineering specialization to the solution of complex engineering 
problems. 

 
2. Problem analysis: Identify, formulate, review research literature, and analyze 
complex engineering problems reaching substantiated conclusions using first principles 
of mathematics, natural sciences, and engineering sciences. 

 

3. Design / Development of solutions: Design solutions for complex engineering 

problems and design system components or processes that meet the specified needs with 

appropriate consideration for the public health and safety, and the cultural, societal, and 

environmental considerations. 

 

4. Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, 

and synthesis of the information to provide valid conclusions. 

 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations. 

 

6. The Engineer and Society: Apply reasoning informed by the contextual knowledge 

to assess societal, health, safety, legal and cultural issues and the consequent 

responsibilities relevant to the professional engineering practice. 

 

7. Environment and Sustainability: Understand the impact of the professional 

engineering solutions in societal and environmental contexts, and demonstrate the 

knowledge of, and need for sustainable development. 

 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities 

and norms of the engineering practice. 

 

9. Individual and Team work: Function effectively as an individual, and as a member 
or leader in diverse teams, and in multidisciplinary settings. 

 

10. Communication: Communicate effectively on complex engineering activities with 

the engineering community and with society at large, such as, being able to comprehend 

and write effective reports and design documentation, make effective presentations, and 

give and receive clear instructions. 

 

 

 

 



  

11. Project Management and Finance: Demonstrate knowledge and understanding of 
the engineering and management principles and apply these to one’s own work, as a 
member and leader in a team, to manage projects and in multidisciplinary environments. 

 

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in 

independent and life-long learning in the broadest. 

 

 

Course Objectives: 

 To provide an understanding of the design aspects of operating system concepts through 

simulation 

 Introduce basic Unix commands, system call interface for process management, interprocess 

communication and I/O in Unix 

 

Course Outcomes: 

 

 

CO 

Number 
CO Statement 

C217.1 
Simulate and implement operating system concepts such as scheduling, deadlock 

management, file management and memory management. 

C217.2 Able to implement C programs using Unix system calls 

C217.3 Implement producer-Consumer Problem. 

C217.4 Implementing Page replacement and disk scheduling techniques. 

C217.5 Use Different system calls for writing application program. 



OPERATING SYSTEMS LAB MANUAL 

 

 

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD 

II Year B.Tech. CSE. II – Sem L T P C 

Course Code: CS406PC 0 0 3 2 

OPERATING SYSTEMS LAB SYLLABUS 

Course Objectives: 

 To provide an understanding of the design aspects of operating system concepts through 

simulation. 

 Introduce basic Unix commands, system call interface for process management, 

interprocess communication and I/O in Unix 

Course Outcomes: 

 Simulate and implement operating system concepts such as scheduling, deadlock 

management, file management and memory management. 

 Able to implement C programs using Unix system calls. 

 

LIST OF EXPERIMENTS: 

1. Write C programs to simulate the following CPU Scheduling algorithms 

a) FCFS b)SJF c)Round Robin d)priority 

2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, 

read, write, close, fcntl, seek, stat, opendir, readdir) 

3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and 

Prevention. 

4. Write a C program to implement the Producer – Consumer problem using 

semaphores using UNIX/LINUX system calls. 

5. Write C programs to illustrate the following IPC mechanisms 

a) Pipes b) FIFOs c)Message Queues d) Shared Memory 

6. Write C programs to simulate the following memory management techniques 

a) Paging b) Segmentation 
 

 

 

 

 

 

 

 

 

 

 

 

 

Department of Computer Science and Engineering, PEC Page 1 



OPERATING SYSTEMS LAB MANUAL 

 

 

TEXT BOOKS: 

1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th 

Edition, John Wiley 

2. Advanced programming in the Unix environment, W.R.Stevens, Pearsoneducation. 

 

REFERENCE BOOKS: 

1. Operating Systems – Internals and Design Principles, William Stallings, Fifth 

Edition–2005, Pearson Education/PHI 

2. Operating System - A Design Approach-Crowley,TMH. 

3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI 

4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education 

5. UNIX Internals: The New Frontiers, U.Vahalia, Pearson Education 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Department of Computer Science and Engineering, PEC Page 2 



OPERATING SYSTEMS R18 B.TECH II-II CSE 

 
LAB PROGRAMS 

 

 

 

Program 

No. 

 

 

 

Program Aim 

 

 

 

Page No 

 

 

 

1 

 

Write C programs to simulate the following CPU 

Scheduling algorithms a) FCFS b) SJF c) Round Robin 

d) priority 

 

 

 

 

2 

 

Write programs using the I/O system calls of 

UNIX/LINUX operating system (open, read, write, close, 

fcntl, seek, stat, opendir, readdir) 

 

 

 

 

3 

 

 

Write a C program to simulate Bankers Algorithm for 
Deadlock Avoidance and Prevention. 

 

 

 

 

4 

 

Write a C program to implement the Producer – 

Consumer problem using semaphores using 

UNIX/LINUX system calls. 

 

 

 

 

5 

 

Write C programs to illustrate the following IPC 

mechanisms a) Pipes b) FIFOs c) Message Queues d) 

Shared Memory 

 

 

 

 

6 

 

 

Write C programs to simulate the following memory 

management techniques a) Paging b) Segmentation 

 

 

 

 

 

 

PALLAVI ENGINEERING COLLEGE Dept. Of CSE 



EXPERIMENT 1 

OBJECTIVE 

Write C programs to simulate the following CPU Scheduling algorithms 

a) FCFS b) SJF c) Round Robin d) Priority 

DESCRIPTION 

FCFS CPU SCHEDULING ALGORITHM: For FCFS scheduling algorithm, read the 

number of processes/jobs in the system, their CPU burst times. The scheduling is performed 

on the basis of arrival time of the processes irrespective of their other parameters. Each 

process will be executed according to its arrival time. Calculate the waiting time and 

turnaround time of each of the processes accordingly. 

 

 

SJF CPU SCHEDULING ALGORITHM: For SJF scheduling algorithm, read the number 

of processes/jobs in the system, their CPU burst times. Arrange all the jobs in order with 

respect to their burst times. There may be two jobs in queue with the same execution time, 

and then FCFS approach is to be performed. Each process will be executed according to the 

length of its burst time. Then calculate the waiting time and turnaround time of each of the 

processes accordingly. 

 

 

ROUND ROBIN CPU SCHEDULING ALGORITHM:For round robin scheduling 

algorithm, read the number of processes/jobs in the system, their CPU burst times, and the 

size of the time slice. Time slices are assigned to each process in equal portions and in 

circular order, handling all processes execution. This allows every process to get an equal 

chance. Calculate the waiting time and turnaround time of each of the processes accordingly. 

 

 

PRIORITY CPU SCHEDULING ALGORITHM:For priority scheduling algorithm, read 

the number of processes/jobs in the system, their CPU burst times, and the priorities. Arrange 

all the jobs in order with respect to their priorities. There may be two jobs in queue with the 

same priority, and then FCFS approach is to be performed. Each process will be executed 

according to its priority. Calculate the waiting time and turnaround time of each of the 

processes accordingly. 



a) FCFS 

 

ALGORITHM: 

Step 1: Input the processes along with their processid(pid),arrival time(at) and burst time 

(bt). 

Step 2: Sort the processes according to their arrival time. 

Step 3: Find the completion time for all other processes i.e. 

for process i ->ct[i] = ct[i-1] + bt[i]. 

Step 4: Find waiting time (wt) for all processes. 

Step 5: As first process that comes need not to wait so waiting time for process 1 will be 0 

 

i.e. wt[0] = 0. 

 

Step 6: Find waiting time for all other processes i.e. for process i -> 

wt[i] = bt[i-1] + wt[i-1] . 

Step 7: Find turnaround time = waiting_time + burst_time for all processes. 

Step 8: Find average waiting time = total_waiting_time / no_of_processes. 

Step 9: Similarly, find average turnaround time = total_turn_around_time / 

no_of_processes. 



SOURCE CODE: 

#include<stdio.h> 

int main() 

{ 

int pid[10]={0},bt[10]={0},at[10]={0},tat[10]={0},wt[10]={0},ct[10]={0}; 

int n,sum=0,temp,temp1,i,j,k,temp2; 

float totalTAT=0,totalWT=0; 

printf("Enter number of processes "); 

scanf("%d",&n); 

printf("Enter the processes details\n\n"); 

for(i=0;i<n;i++) 

{ 

printf("Enter processid"); 

scanf("%d",&pid[i]); 

printf("Arrival time of process[%d] ",i+1); 

scanf("%d",&at[i]); 

printf("Burst time of process[%d] ",i+1); 

scanf("%d",&bt[i]); 

printf("\n"); 

} 

for (i=0; i<n-1; i++) 

{ 

for (j=0; j<n-i-1; j++) 

{ 

if (at[j]>at[j+1]) 

{ 

// sorting the arrival times 

temp = at[j]; 

at[j] = at[j+1]; 

at[j+1] = temp; 



// sorting the burst times 

temp1 = bt[j]; 

bt[j] = bt[j+1]; 

bt[j+1] = temp1; 

// sorting the process numbers 

temp2=pid[j]; 

pid[j]=pid[j+1]; 

pid[j+1]=temp2; 

} 

} 

} 

//calculate completion time of processes 

 

 

for(j=0;j<n;j++) 

{ 

sum+=bt[j]; 

ct[j]+=sum; 

} 

//calculate turnaround time and waiting times 

 

 

for(k=0;k<n;k++) 

{ 

tat[k]=ct[k]-at[k]; 

totalTAT+=tat[k]; 

} 

 

 

wt[0]=0; 

for(k=0;k<n;k++) 

{ 

wt[k]=0; 



for(j=0;j<k;j++) 

wt[k]+=bt[j]; 

totalWT+=wt[k]; 

} 

 

 

printf("Solution: \n\n"); 

printf("P#\t AT\t BT\t CT\t TAT\t WT\t\n\n"); 

for(i=0;i<n;i++) 

{ 

printf("P%d\t %d\t %d\t %d\t %d\t %d\n",pid[i],at[i],bt[i],ct[i],tat[i],wt[i]); 

} 

printf("\n\nAverage Turnaround Time = %f\n",totalTAT/n); 

printf("\nAverage Waiting Time = %f\n\n",totalWT/n); 

return 0; 

} 



OUTPUT: 

Enter number of processes 

Enter the processes details 

5  

Enter processid1 

Arrival time of process[1] 2  

Burst time of process[1]  3  

Enter processid2 

Arrival time of process[2] 5  

Burst time of process[2]  4  

Enter processid3 

Arrival time of process[3] 1  

Burst time of process[3]  5  

Enter processid4 

Arrival time of process[4] 3  

Burst time of process[4]  3  

Enter processid5 

Arrival time of process[5] 4  

Burst time of process[5]  2  

Solution: 

P# AT BT CT TAT WT 

P3 1 5 5 4 0 
 

P1 2 3 8 6 5 
 

P4 3 3 11 8 8 
 

P5 4 2 13 9 11 
 

P2 5 4 17 12 13 
 

 

Average Turnaround Time = 7.800000 

Average Waiting Time = 7.400000 



b) SJF NON-PREEMPTIVE 

ALGORITHM: 

Step 1: Input the processes along with their processnumber(p)and burst time (bt). 

Step 2: Sort the processes according to their burst times. 

Step 3: Find the completion time for all other processes i.e. 

for process i -> ct[i] = ct[i-1] + bt[i]. 

Step 4: Find waiting time (wt) for all processes. 

 

Step 5: As first process that comes need not to wait so waiting time for process 1 will be 0 

 

i.e. wt[0] = 0. 

 

Step 6: Find waiting time for all other processes i.e. for process i -> 

wt[i] = bt[i-1] + wt[i-1] . 

Step 7: Find turnaround time = waiting_time + burst_time for all processes. 

Step 8: Find average waiting time = total_waiting_time / no_of_processes. 

Step 9: Similarly, find average turnaround time = total_turn_around_time / 

no_of_processes. 



SOURCE CODE: 

#include<stdio.h> 

#include<conio.h> 

#define max 30 

void main() 

{ 

inti,j,n,t,p[max],bt[max],wt[max],tat[max]; 

floatawt=0,atat=0; 

printf("Enter the number of processes\n"); 

scanf("%d",&n); 

//Enter the processes according to their arrival times 

for(i=0;i<n;i++) 

{ 

printf("Enter the process number\n"); 

scanf("%d",&p[i]); 

printf("Enter the burst time of the process\n"); 

scanf("%d",&bt[i]); 

} 

//Apply the bubble sort technique to sort the processes according to their burst times 

for(i=0;i<n;i++) 

{ 

for(j=0;j<n-i-1;j++) 

{ 

if(bt[j]>bt[j+1]) 

{ 

// Sort according to the burst times 

t=bt[j]; 

bt[j]=bt[j+1]; 

bt[j+1]=t; 

//Sorting Process Numbers 



t=p[j]; 

p[j]=p[j+1]; 

p[j+1]=t; 

} 

} 

} 

printf("Process\t Burst Time\t Waiting Time\t Turn Around Time\n"); 

for(i=0;i<n;i++) 

{ 

wt[i]=0; 

tat[i]=0; 

for(j=0;j<i;j++) 

wt[i]=wt[i]+bt[j]; 

tat[i]=wt[i]+bt[i]; 

Total_wt=Total_wt +wt[i]; 

Total_tat=Total_tat+tat[i]; 

printf("%d\t %d\t\t %d\t\t %d\n",p[i],bt[i],wt[i],tat[i]); 

} 

awt=(float)Total_wt /n; 

atat=(float)Total_tat /n; 

printf("The average waiting time = %f\n",awt); 

printf("The average turn aroud time = %f\n",atat); 

getch(); 

} 



OUTPUT: 

Enter the number of processes 

4 

Enter the process number 

1 

Enter the burst time of the process 

2 

Enter the process number 

2 

Enter the burst time of the process 

8 

Enter the process number 

3 

Enter the burst time of the process 

1 

Enter the process number 

4 

Enter the burst time of the process 

4 

Process Burst Time Waiting Time Turn Around Time 

3 1 0 1 

1 2 1 3 

4 4 3 7 

2 8 7 15 

The average waiting time = 2.750000 

The average turn around time = 6.500000 



c) ROUND ROBIN 

ALGORITHM: 

Step 1: Input the processes along with their burst time (bt). 

Step 2: Input the time quantum (or) time slice 

Step 3: Create an array rem_bt[] to keep track of remaining burst time of processes. This 

array is 

initially a copy of bt[] (burst times array) 

Step 4:Create another array wt[] to store waiting times of processes. Initialize this array as 0. 

Step 5:Initialize time : t = 0 

Step 6: Keep traversing the all processes while all processes are not done. Do following for 

i'th process if it is not done yet. 

a- If rem_bt[i] > quantum 

(i) t = t + quantum 

(ii) bt_rem[i] -= quantum; 

b- Else // Last cycle for this process 

(i) t = t + bt_rem[i]; 

(ii) wt[i] = t - bt[i] 

(ii) bt_rem[i] = 0; // This process is over 

Step 8: Find average waiting time = total_waiting_time / no_of_processes. 

 

Step 9: Similarly, find average turnaround time = total_turn_around_time / no_of_processes. 



SOURCE CODE: 

#include<stdio.h> 

int main() 

{ 

int i,n,count=0,time_quantum,t,at[10],bt[10],rem_bt[10],wt[10],tat[10],flag=0; 

floattotal_wt=0 , total_tat=0 

printf("Enter Total Process:\t "); 

scanf("%d",&n); 

for(i=0;i<n;i++) 

{ 

printf("Enter Burst Time for Process %d :",i+1); 

scanf("%d",&bt[i]); 

} 

printf("Enter Time Quantum:\t"); 

scanf("%d",&time_quantum); 

for (i = 0 ; i < n ; i++) 

rem_bt[i] = bt[i]; 

t = 0; // Current time 

// Keep traversing processes in round robin manner until all of them are not done. 

while (1) 

{ 

flag=1; 

// Traverse all processes one by one repeatedly 

for (i = 0 ; i < n; i++) 

{ 

// If burst time of a process is greater than 0 then only need to process further 

if (rem_bt[i] > 0) 

{ 

flag=0; // There is a pending process 

if (rem_bt[i] > time_quantum) 



{ 

// Increase the value of t i.e. shows how much time a process has been processed 

t += time_quantum; 

// Decrease the burst_time of current process by quantum 

rem_bt[i] -= time_quantum; 

} 

// If burst time is smaller than or equal to quantum. Last cycle for this process 

else 

{ 

// Increase the value of t i.e. shows how much time a process has been processed 

t = t + rem_bt[i]; 

// Waiting time is current time minus time used by this process 

wt[i] = t - bt[i]; 

// As the process gets fully executed make its remaining burst time = 0 

rem_bt[i] = 0; 

} 

} 

} 

if (flag==1) 

break; 

} 

for (i = 0; i < n ; i++) 

tat[i] = bt[i] + wt[i]; 

printf("\n Process BT\t WT\t TAT \n"); 

for(i=0;i<n;i++) 

printf("\n %d \t %d \t %d \t %d \t",i+1,bt[i],wt[i],tat[i]); 

for (i = 0; i < n ; i++) 

{ 

total_wt= total_wt+wt[i]; 

total_tat= total_tat+tat[i]; 



} 

printf("\nAverage waiting time = %f", total_wt/n); 

printf ("\nAverage turn around time = %f",total_tat/n); 

} 



OUTPUT: 

Enter Total Process:  4 

Enter Burst Time for Process 1 :4 

Enter Burst Time for Process 2 :1 

Enter Burst Time for Process 3 :8 

Enter Burst Time for Process 4 :1 

Enter Time Quantum: 1 

 

Process BT WT TAT 
 

 

1 4 5 9  

2  1 1 2 

3  8 6 14 

4  1 3 4 

Average waiting time = 3.750000 

Average turn around time = 7.250000 



d) PRIORITY NON-PREEMPTIVE 

ALGORITHM: 

Step 1: Input the processes along with their processnumber(p),burst time (bt) and 

priority(pr) 

Step 2: Sort the processes according to their priorities. 

Step 3: Find the completion time for all other processes i.e. 

for process i -> ct[i] = ct[i-1] + bt[i]. 

Step 4: Find waiting time (wt) for all processes. 

Step 5: As first process that comes need not to wait so waiting time for process 1 will be 0 

i.e. wt[0] = 0. 

 

Step 6: Find waiting time for all other processes i.e. for process i -> 

wt[i] = bt[i-1] + wt[i-1] . 

Step 7: Find turnaround time = waiting_time + burst_time for all processes. 

Step 8: Find average waiting time = total_waiting_time / no_of_processes. 

Step 9: Similarly, find average turnaround time = total_turn_around_time / 

no_of_processes. 



SOURCE CODE: 

#include<stdio.h> 

#define max 30 

void main() 

{ 

int i,j,n,t,p[max],bt[max],pr[max],wt[max],tat[max],Total_wt=0,Total_tat=0; 

float awt=0,atat=0; 

printf("Enter the number of processes\n"); 

scanf("%d",&n); 

//Enter the processes according to their arrival times 

for(i=0;i<n;i++) 

{ 

printf("Enter the process number\n"); 

scanf("%d",&p[i]); 

printf("Enter the burst time of the process\n"); 

scanf("%d",&bt[i]); 

printf("Enter the priority of the process\n"); 

scanf("%d",&pr[i]); 

} 

//Apply the bubble sort technique to sort the processes according to their priorities times 

for(i=0;i<n;i++) 

{ 

for(j=0;j<n-i-1;j++) 

{ 

if(pr[j]>pr[j+1]) 

{ 

// Sort according to priorities 

t=pr[j]; 

pr[j]=pr[j+1]; 

pr[j+1]=t; 



// Sorting burst times 

t=bt[j]; 

bt[j]=bt[j+1]; 

bt[j+1]=t; 

// Sorting Process numbers 

t=p[j]; 

p[j]=p[j+1]; 

p[j+1]=t; 

} 

} 

} 

printf("Process\t Burst Time\t Priority\tWaiting Time\t Turn Around Time\n"); 

for(i=0;i<n;i++) 

{ 

wt[i]=0; 

tat[i]=0; 

for(j=0;j<i;j++) 

wt[i]=wt[i]+bt[j]; 

tat[i]=wt[i]+bt[i]; 

Total_wt=Total_wt+wt[i]; 

Total_tat=Total_tat+tat[i]; 

printf("P%d\t %d\t\t%d\t\t %d\t\t %d\n",p[i],bt[i],pr[i],wt[i],tat[i]); 

} 

awt=(float)Total_wt/n; 

atat=(float)Total_tat/n; 

printf("The average waiting time = %f\n",awt); 

printf("The average turn aroud time = %f\n",atat); 

} 



OUTPUT: 

Enter the number of processes 

4 

Enter the process number 

1 

Enter the burst time of the process 

21 

Enter the priority of the process 

2 

Enter the process number 

2 

Enter the burst time of the process 

3 

Enter the priority of the process 

1 

Enter the process number 

3 

Enter the burst time of the process 

6 

Enter the priority of the process 

4 

Enter the process number 

4 

Enter the burst time of the process 

2 

Enter the priority of the process 

3 

Process Burst Time Priority Waiting Time Turn Around Time 

P2 3  1  0  3 



P1 21 2 3 24 

P4 2 3 24 26 

P3 6 4 26 32 

The average waiting time = 13.250000 

The average turn around time = 21.250000 



EXPERIMENT 2 

OBJECTIVE 

Write programs using the I/O system calls of UNIX/LINUX operating system 

(open, read, write, close, fcntl, seek, stat, opendir, readdir) 

DESCRIPTION 

The interface between a process and an operating system is provided by system calls. In 

general, system calls are available as assembly language instructions. They are also included 

in the manuals used by the assembly level programmers. System calls are usually made when 

a process in user mode requires access to a resource. Then it requests the kernel to provide 

the resource via a system call. 

In general, system calls are required in the following situations: 

If a file system requires the creation or deletion of files. Reading and writing from files also 

require a system call. 

Creation and management of new processes. 

Network connections also require system calls. This includes sending and receiving packets. 

Access to a hardware devices such as a printer, scanner etc. requires a system call. 

Types of System Calls 

There are mainly five types of system calls. These are explained in detail as follows: 

Process Control 

These system calls deal with processes such as process creation, process termination etc. 

File Management 

These system calls are responsible for file manipulation such as creating a file, reading a file, 

writing into a file etc. 

Device Management 

These system calls are responsible for device manipulation such as reading from device 

buffers, writing into device buffers etc. 

Information Maintenance 

These system calls handle information and its transfer between the operating system and the 

user program. 

Communication 

These system calls are useful for interprocess communication. They also deal with creating 

and deleting a communication connection. 

open() Used to Create a new empty file. 

int open (const char* Path, int flags [, int mode ]); 



Parameters 

Path : is the name to the file to open. 

flags : is used to define the file opening modes such as create, read, write modes. 

mode : is used to define the file permissions. 

Upon successful completion, the function shall open the file and return a non-negative integer 

representing the lowest numbered unused file descriptor. Otherwise, -1 shall be returned 
and errno set to indicate the error. No files shall be created or modified if the function returns 

-1. 

 

read() is used to read the content from the file 

size_t read (intfd, void* buf, size_tcnt); 

 

Parameters 

fd: file descripter 

buf: buffer to read data from 

cnt: length of buffer 

Returns how many bytes were actually read or -1 in case of error. 

write() is used to write the content to the file. 

 

size_t write (intfd, void* buf, size_tcnt); 

Parameters 

 fd: file descripter 

 buf: buffer to write data to 

 cnt: length of buffer 

Returns how many bytes were actually writtenor -1 in case of error. 

close() Tells the operating system you are done with a file descriptor and Close the 

file which pointed by fd. 

 

int close(intfd); 

Parameter 

 fd :file descriptor 

Returns 0 on success or -1 on error. 

 lseek() System call that is used to change the location of the read/write pointer of a file 
descriptor. The location can be set either in absolute or relative terms. 

 

off_t lseek(int fd, off_t offset, int ref); 



Parameters 

fd : file descriptor of the pointer that is going to be moved 

offset : The offset of the pointer 

ref : method in which offsetid to be interpreted 

Returns the offset of the pointer (in bytes) from thebeginning of the file. If the return value is 

-1,then there was an error moving the pointer. 

 
SEEK_CUR 

 
The current file position of fd is set to its current value plus pos, which can be negative, zero, 

or positive. A pos of zero returns the current file position value 

 

new file postion=current file position + offset(the pos argument to lseek) 

SEEK_END 

The current file position of fd is set to the current length of the file plus pos,which can be 

negative, zero, or positive. A pos of zero sets the offset to the endof the file. 

new file postion= file position of End Of the File + offset 

SEEK_SET 

The current file position of fd is set to pos.the offset is measured from the beggining of the 
file. A pos of zero sets the offset to the beginning of the file. 

 

new file postion= offset 

 

The call returns the new file position on success. On error, it returns -1 and errno is set 

asappropriate. 



ALGORITHM: 

 

Step 1: Start the program. 

 

Step 2: open a file for O_RDWR for R/W,O_CREATE for creating a file , O_TRUNC for 

truncate a file 

Step 3: Using write command, write the msg array contents file. 

 

Step 4:Using lseek command to position the pointer to the specified location. 

 

Step 5: Then the file is opened for read only mode and read the characters and displayed 

it and close the file 

Step 6: Stop the program 



SOURCE CODE: 

#include<stdio.h> 

#include<fcntl.h> 

#include<unistd.h> 

int main() 

{ 

intfd; 

char buffer[80]; 

charmsg[50]="Hello PEC"; 

fd=open("ss.txt",O_RDWR|O_CREAT); 

printf("fd=%d",fd); 

if(fd!=-1) 

{ 

printf("\n ss.txt opened with read write access\n"); 

write(fd,msg,sizeof(msg)); 

lseek(fd,0,SEEK_SET); 

read(fd,buffer,sizeof(msg)); 

printf("\n %s was written to my file\n",buffer); 

close(fd); 

} 

return 0; 

} 



OUTPUT: 

fd=3 

ss.txt opened with read write access 

Hello PEC was written to my file 



 stat() Stat system call is a system call in Linux to check the status of a file such as to 

check when the file was accessed. 

int stat(const char *path, struct stat *buf) 

Parameters: 

path (Input) A pointer to the null-terminated path name of the file from which 

information is required. 

buf (Output) A pointer to the area to which the information should be written. 

 

 

ALGORITHM: 

 

Step 1: Start the program. 

 

Step 2:Use the stat command to display information regarding the root folder. 

Step 3: Stop the program 



SOURCE CODE: 

 

#include <sys/types.h> 

#include <sys/stat.h> 

#include <stdio.h> 

#include <time.h> 

main() 

{ 

struct stat info; 

if (stat("/", &info) != 0) 

perror("stat() error"); 

else 

{ 

puts("stat() returned the following information about root f/s:"); 

printf(" inode: %d\n", (int) info.st_ino); 

printf(" dev id: %d\n", (int) info.st_dev); 

printf(" mode: %08x\n",  info.st_mode); 

printf(" links: %d\n", info.st_nlink); 

printf(" uid: %d\n", (int) info.st_uid); 

printf(" gid: %d\n", (int) info.st_gid); 

} 

} 



OUTPUT: 

stat() returned the following information about root f/s: 

inode: 578659 

dev id: 2097301 

mode: 000041ed 

links: 1 

uid:  0 

gid:  0 



 opendir() 

#include <sys/types.h> 

#include <dirent.h> 

 

DIR *opendir(const char *dirname); 

The opendir() function opens a directory so that it can be read with the readdir() function. 

The variable dirname is a string giving the name of the directory to open. If the last 

component of dirname is a symbolic link, opendir() follows the symbolic link. As a result, 

the directory that the symbolic link refers to is opened. The functions readdir(), rewinddir(), 

and closedir() can be called after a successful call to opendir(). The first readdir() call reads 

the first entry in the directory. 

 

Parameters 

dirname 

(Input) A pointer to the null-terminated path name of the directory to be opened. 

Return Value 
value 

opendir() was successful. The value returned is a pointer to a DIR, representing an 

open directory stream. This DIR describes the directory and is used in subsequent 

operations on the directory using the readdir(), rewinddir(), and closedir() functions. 

NULL pointer 

opendir() was not successful. The errno global variable is set to indicate the error. 

 

 readdir() 

#include <sys/types.h> 

#include <dirent.h> 

struct dirent *readdir(DIR *dirp); 

readdir()reads one dirent structure from the directory pointed at by fd into the memory area 

pointed to by dirp. The parameter count is ignored; at most one dirent structure is read. 

The dirent structure is declared as follows: 

struct dirent 

{ 

long d_ino; /* inode number */ 

off_t d_off; /* offset to this dirent */ 



unsigned short d_reclen; /* length of this d_name */ 

char d_name [NAME_MAX+1]; /* filename (null-terminated) */ 

long d_ino; /* inode number */ 

off_t d_off; /* offset to this dirent */ 

unsigned short d_reclen; /* length of this d_name */ 

char d_name [NAME_MAX+1]; /* filename (null-terminated) */ 

} 

 

 

d_ino is an inode number. d_off is the  distance  from the  start of the  directory to 

this dirent. d_reclen is the size of d_name, not counting the null terminator. d_name is a 

null-terminated filename. 

Parameters 

dirp 

(Input) A pointer to a DIR that refers to the open directory stream to be read. 

Return Value 

value 

readdir() was successful. The value returned is a pointer to a dirent structure describing the 

next directory entry in the directory stream. 



ALGORITHM: 

 

Step 1: Start the program 

Step 2: Include header files 

Step 3: The opendir() function shall open a directory stream corresponding to the 

directory named by the dirname argument(home directory) 

Step 4: The readdir() function returns a pointer to a dirent structure representing the next 

directory entry in the directory stream pointed to by dr. 

Step 5: The closedir() function closes the directory stream associated with dir. The 

directory stream descriptor dr is not available after this call. 

Step 6: Stop the program 



SOURCE CODE: 

#include <stdio.h> 

#include <dirent.h> 

int main(void) 

{ 

struct dirent *de; // Pointer for directory entry 

// opendir() returns a pointer of DIR type. 

DIR *dr = opendir("."); 

if (dr == NULL) // opendir returns NULL if couldn't open directory 

{ 

printf("Could not open current directory" ); 

return 0; 

} 

while ((de = readdir(dr)) != NULL) 

printf("%s\n", de->d_name); 

closedir(dr); 

return 0; 

} 

OUTPUT: 

Opens the home directory and prints the contents of it. 



EXPERIMENT 3 

OBJECTIVE 

Write a C program to simulate Bankers Algorithm for Deadlock Avoidance 

and Prevention. 

DESCRIPTION 

DEADLOCK AVOIDANCE 

In a multiprogramming environment, several processes may compete for a finite number of 

resources. A process requests resources; if the resources are not available at that time, the 

process enters a waiting state. Sometimes, a waiting process is never again able to change 

state, because the resources it has requested are held by other waiting processes. This 

situation is called a deadlock. Deadlock avoidance is one of the techniques for handling 

deadlocks. This approach requires that the operating system be given in advance additional 

information concerning which resources a process will request and use during its lifetime. 

With this additional knowledge, it can decide for each request whether or not the process 

should wait. To decide whether the current request can be satisfied or must be delayed, the 

system must consider the resources currently available, the resources currently allocated to 

each process, and the future requests and releases of each process. Banker’s algorithm is a 

deadlock avoidance algorithm that is applicable to a system with multiple instances of each 

resource type 



ALGORITHM: 

 

Step 1: Input the number of processes and number of resources. 

Step 2: Input the Max matrix. 

Step 3: Input the Allocation matrix. 

 

Step 4:Input Available Resources after allocation. 

 

Step 5:Calculation of Need Matrix 

 

need[i][j]=max[i][j]-alloc[i][j] 

 

Step 6:Apply the safety algorithm 

 

complete[i] = 0; for i=1, 2, 3, 4….n 

Step 7: if avail[j]<need[i][j] break 

Step 8: else the process getsexecuted and add the process to safe sequence and 

avail[j]+=alloc[process][j]; 

Step 9: If all the processes are completed the system is in safe sequence 

Step 10: Otherwise the system is not in the safe state. 



SOURCE CODE: 

#include<stdio.h> 

int main() 

{ 

int max[10][10],need[10][10],alloc[10][10],avail[10],completed[10], safeSequence[10]; 

int p,r,I,j,process,count=0; 

printf(“\nEnter the no. of processes:”); 

scanf(“%d”,&p); 

for(i=0;i<p;i++) 

completed[i]=0; 

printf(“\nEnter the no of resources:”); 

scanf(“%d”,&r); 

//Input Max matrix 

printf(“\nEnter the Max Matrix for each process:”); 

for(i=0;i<p;i++) 

{ 

printf(“\n For process %d:”,i+1); 

for(j=0;j<r;j++) 

scanf(“%d”,&max[i][j]); 

} 

// Input Allocation Matrix 

printf(“\nEnter the allocation for each process:”); 

for(i=0;i<p;i++) 

{ 

printf(“\n For process %d:”,i+1); 

for(j=0;j<r;j++) 

scanf(“%d”,&alloc[i][j]); 

} 

// Input Available Resources after allocation 

printf(“\n\n Enter the Available Resources:”); 



for(i=0;i<r;i++) 

scanf(“%d”,&avail[i]); 

// Calculation of Need Matrix 

for(i=0;i<p;i++) 

for(j=0;j<r;j++) 

need[i][j]=max[i][j]-alloc[i][j]; 

do 

{ 

printf(“ Need Matrix :\n” ); 

for(i=0;i<p;i++) 

{ 

for(j=0;j<r;j++) 

printf(“%d\t\t”, need[i][j]); 

printf(“\n”); 

} 

process=-1; 

for(i=0;i<p;i++) 

{ 

if(completed[i]==0) 

{ 

process=I; 

for(j=0;j<r;j++) 

{ 

if(avail[j]<need[i][j]) 

{ 

process=-1; 

break; 

} 

} 

} 



if(process!=-1) 

break; 

} 

if(process!=-1) 

{ 

printf(“\n Process %d runs to completion!:”, process+1); 

safeSequence[count]=process+1; 

count++; 

for(j=0;j<r;j++) 

{ 

avail[j]+=alloc[process][j]; 

alloc[process][j]=0; 

max[process][j]=0; 

need[process][j]=0; 

completed[process]=1; 

printf(“\n Available resources %d \n”, avail[j]); 

} 

} 

} while (count!=p && process!=-1); 

if(count==p) 

{ 

 

 

 

 

 

 

 

 

} 

else 

 

 

} 

printf(“\n The system is in safe sate!\n”); 

printf(“Safe Sequence:<”); 

for(i=0;i<p;i++) 

printf(“%d”, safeSequence[i]); 

printf(“>\n”); 

 

 

 

printf(“The system is in unsafe state!”); 



OUTPUT: 

Enter the no. of Processes:5 

Enter the no of Resources:3 

Enter the Max Matrix for each Process: 

For process 1:7 5 3 

For process 2:3 2 2 

For process 3:9 0 2 

For process 4:2 2 2 

For process 5:4 3 3 

Enter the allocation for each Process: 

For process 1:0 1 0 

For process 2:2 0 0 

For process 3:9 0 2 

For process 4:2 2 2 

For process 5:4 3 3 

Enter the Available Resources:3 3 2 

Need Matrix : 

7 4 3 

1 2 2 

6 0 0 

0 1 1 

4 3 1 

 

 

Process 2 runs to completion!: 

Available Resources 5 

Available Resources 3 

Available Resources 2 

Need Matrix : 

7 4 3 

0 0 0 



6 0 0 

0 1 1 

4 3 1 

 

 

Process 4 runs to completion!: 

Available Resources 7 

Available Resources 4 

Available Resources 3 

Need Matrix : 

7 4 3 

0 0 0 

6 0 0 

0 0 0 

4 3 1 

Process 1 runs to completion!: 

Available Resources 7 

Available Resources 5 

Available Resources 3 

Need Matrix : 

0 0 0 

0 0 0 

6 0 0 

0 0 0 

4 3 1 

 

 

Process 3 runs to completion!: 

Available Resources 10 

Available Resources 5 

Available Resources 5 

Need Matrix : 



0 0 0 

0 0 0 

0 0 0 

0 0 0 

4 3 1 

 

 

Process 5 runs to completion!: 

Available Resources 10 

Available Resources 5 

Available Resources 7 

The system is in safe sate! 

Safe Sequence:<24135> 



EXPERIMENT 4 

OBJECTIVE 

Write a C program to implement the Producer – Consumer problem using 

semaphores using UNIX/LINUX system calls. 

DESCRIPTION 

Producer-consumer problem, is a common paradigm for cooperating processes. A producer 

process produces information that is consumed by a consumer process. One solution to the 

producer-consumer problem uses shared memory. To allow producer and consumer processes 

to run concurrently, there must be available a buffer of items that can be filled by the 

producer and emptied by the consumer. This buffer will reside in a region of memory that is 

shared by the producer and consumer processes. A producer can produce one item while the 

consumer is consuming another item. The producer and consumer must be synchronized, so 

that the consumer does not try to consume an item that has not yet been produced. 

ALGORITHM: 

Step 1: The Semaphore full & empty are initialized. 

 

Step 2: In the case of producer process 

 

i) Produce an item in to temporary variable. 

 

ii) If there is empty space in the buffer check the mutex value for enter into the critical 

section. 

iii) If the mutex value is 0, allow the producer to add value in the temporary variable 

to the buffer. 

Step 3: In the case of consumer process 

 

i) It should wait if the buffer is empty 

 

ii) If there is any item in the buffer check for mutex value, if the mutex==0, remove 

item from buffer 

iii) Signal the mutex value and reduce the empty value by 1. 

 

iv) Consume the item. 

 

Step 4: Print the result 



SOURCE CODE: 

 

#include<stdio.h> 

#include<stdlib.h> 

int full=0,empty=3,x=0; 

main() 

{ 

int n; 

void producer(); 

void consumer(); 

int wait(int); 

int signal(int); 

printf("\n1.PRODUCER\n2.CONSUMER\n3.EXIT\n"); 

while(1) 

{ 

printf("\nENTER YOUR CHOICE\n"); 

scanf("%d",&n); 

switch(n) 

{ 

case 1: 

if(empty!=0) 

producer(); 

else 

printf("BUFFER IS FULL"); 

break; 

case 2: 

if(full!=0) 

consumer(); 

 

 

 

break; 

case 3: 

 

break; 

else 

 

 

 

 

 

exit(0); 

 

printf("BUFFER IS EMPTY"); 



} 

} 

} 

 

 

int wait(int s) 

{ 

return(--s); 

} 

 

int signal(int s) 

{ 

return(++s); 

} 

 

void producer() 

{ 

full=signal(full); 

empty=wait(empty); 

x++; 

printf("\n Producer produces the item%d \n",x); 

} 

 

void consumer() 

{ 

full=wait(full); 

empty=signal(empty); 

printf("\n Consumer consumes item%d \n",x); 

x--; 

} 



OUTPUT: 

 

1. PRODUCER 

2. CONSUMER 

3. EXIT 

 
ENTER YOUR CHOICE 
1 

 

Producer produces the item1 

ENTER YOUR CHOICE 

1 

Producer produces the item2 

ENTER YOUR CHOICE 

1 

Producer produces the item3 

ENTER YOUR CHOICE 

2 

Consumer consumes item3 

ENTER YOUR CHOICE 

1 

 

Producer produces the item 3 

ENTER YOUR CHOICE 

3 



EXPERIMENT 5 

OBJECTIVE 

Write C programs to illustrate the following IPC mechanisms 

a) Pipes b) FIFOs c) Message Queues d) Shared Memory 

DESCRIPTION 

a) PIPES 

Pipes are unidirectional byte streams which connect the standard output from one process 

into the standard input of another process. A pipe is created using the system call pipe that 

returns a pair of file descriptors. 

 

A pipe is created by the pipe() system call. 

Synopsis 

int pipe ( int *filedes ) ; 

Description 

Call to the pipe () function which returns an array of file descriptors fd[0] and fd [1]. 

fd [1] connects to the write end of the pipe, and 

fd[0] connects to the read end of the pipe. 

Anything can be written to the pipe, and read from the other end in the order it came in. 

It can be used only between parent and child processes. 

RETURNS: 0 on success 

-1 on error: errno = EMFILE (no free descriptors) 

EMFILE (system file table is full) 

EFAULT (fd array is not valid) 

fd[0] is set up for reading, fd[1] is set up for writing. i.e., the first integer in the array 

(element 0) is set up and opened for reading, while the second integer (element 1) is set up 

and opened for writing. 

When we use fork in any process, file descriptors remain open across child process and also 

parent process. If we call fork after creating a pipe, then the parent and child can 

communicate via the pipe. 

https://www.geeksforgeeks.org/fork-system-call/


b) FIFOs 

Pipes were meant for communication between related processes. We can achieve 

communication between unrelated processes using Named Pipes. Another name for named 

pipe is FIFO (First-In-First-Out). 

A fifo is created by mkfifo () system call. 

Synopsis 

#include <sys/types.h>#include <sys/stat.h> 

int mkfifo(const char *pathname, mode_t mode); 

Description 

mkfifo() makes a FIFO special file with name pathname. 

mode specifies the FIFO's permissions. It is modified by the process's umask in the usual 

way: the permissions of the created file are (mode & ~umask). 

 

Once you have created a FIFO special file in this way, any process can open it for reading or 

writing, in the same way as an ordinary file. However, it has to be open at both ends 

simultaneously before you can proceed to do any input or output operations on it. 

Opening a FIFO for reading normally blocks until some other process opens the same FIFO 

for writing, and vice versa. 

 

Return Value 

On success mkfifo() returns 0. In the case of an error, -1 is returned (in which case, errno is 

set appropriately). 

 

c) MESSAGE QUEUES 

Message queues provide a form of message passing in which any process (given that it has 

the necessary permissions) can read a message from or write a message to any IPC message 

queue on the system. There are no requirements that a process be waiting to receive a 

message from a queue before another process sends one, or that a message exist on the queue 

before a process requests to receive one. 

ftok() 

This generates an IPC key on the basis of supplied filename and ID. The filename can be 

provided along with its complete path. The file name must refer to an existing file. 

https://linux.die.net/include/sys/types.h
https://linux.die.net/include/sys/stat.h


Synopsis 

ket_t ftok(const char *filename,int id); 

 

 

Description 

This function will generate the same key value if the same filebame and the same ID is 

supplied. Upon successful completion ftok will return a key, Otherwise it will return -1. 

 

msgget() 

This is used for creating a new message queue and for accessing an existing queue that is 

related to the specified key. If this is executed successfully, the function returns the identifier 

of the message queue. 

Synopsis 

int msggt(key_t,int flag) 

 

 

Description 

key: this is a uniquekey value that is retrieved by invoking the ftok function 

flag: this can be any of the following constants; 

IPC_CREAT: Creates the message queue if it doesn’t already exist and returns the message 

queue identifier for the newly created message queue. If the message queue already exists 

with the supplied key value, it returns its identifier. 

IPC_EXCL: If both IPC_CREAT and IPC_EXCL are specified and the message queue does 

not exist, then it is created. However, if it already exists then function will fail. 

 

msgrcv() 

This is used for reading a message form the specified message queue whose identifier is 

supplied. 

Synopsis 

int msgrcv(int msqid,void *msgstruc,int msgsize,long typemsg,int flag); 

 

 

Description 

msqid: Represents the message queue identifier of the queue from which the message needs 

to be read. 

msgstruc: This is the user-defined structure into which the read message is placed. The user- 

defined structure must contain two members. One is usually named mtype, which must be of 



type long int that specifies the type of message and the second is usually called mesg, which 

should be of char type to store message. 

msgsize: Represents the size of the text to be read from the message queue in terms of bytes. 

If the message that is read is larger than msgsize then it will be truncated to msgsize bytes. 

typemesg: Specifies which message on the queue needs to be received: 

If typemsg is 0, the first message o the queue needs to be received. 

If typemsg is greater than 0, the first message whose mtype field is equal to the 

typemsg is received 

If typemsg is less than 0, a message whose mtype field is less than or equal to the 

typemsg is received 

flag: Determines the action to be taken if the desired message is not found in the queue. It 

keeps its value of 0 if you don’t want to specify the flag. 

The flag can have any of the following values: 

IPC_NOWAIT : This makes the msgrcv function fail if there is no desired message in the 

queue, that it will not make the caller wait for the appropriated message on the queue. If flag 

is not set to IPC_NOWAIT, it will make the caller wait for an appropriate message on the 

queue instead of failing the function. 

MSG_NOERROR: This allows you to receive text that is larger than the size that’s specified 

in the msgsize argument It simply truncates the text and receives it. If the flag is not set, on 

receiving the larger text, the function will not receive it and will fail the function. 

If the function is executed successfully, the function returns the number of bytes that were 

placed into the text field of he structure that is pointed to by msgstruc. On failure the function 

returns a value of -1. 

 

msgsnd() 

This is used for sending or delivering a message to the queue. 

Synopsis 

int msgsnd(int msqid,struct msgbuf &msgstruc,in msgsize,int flag); 

 

 

Description 

msqid: Represent the queue identifier of the message that we want to send. The queue 

identifier is usually retrieved by invoking msgget function. 

msgstruc: This is a pointer to the user-defined structure. It is the mesg member that contains 

the message that wee want to send to the queue. 



msgsize: Represents the size of the message in bytes. 

flag: Determines the action to be taken on the message. If the flag value is set to IPC_NOAIT 

and if the message queue is full the message will not be written to the queue and the control 

is returned to the calling process. But if flag is not set and the message queue is full, then the 

calling process will suspend until a space becomes available in the queue. Usually the value 

of flag is set to 0 

If this is executed successfully, the function returns 0, otherwise it returns -1. 

d) SHARED MEMORY 

Inter Process Communication through shared memory is a concept where two or more 

process can access the common memory. And communication is done via this shared 

memory where changes made by one process can be viewed by another process. 

The problem with pipes, fifo and message queue – is that for two process to exchange 

information. 

 The information has to go through the kernel. 

 Server reads from the input file. 

 The server writes this data in a message using either a pipe, fifo or message queue. 

 The client reads the data from the IPC channel,again requiring the data to be copied 

from kernel’s IPC buffer to the client’s buffer. 

 Finally the data is copied from the client’s buffer. 

A total of four copies of data are required (2 read and 2 write). So, shared memory provides a 

way by letting two or more processes share a memory segment. With Shared Memory the 

data is only copied twice – from input file into shared memory and from shared memory to 

the output file. 

ftok(): is used to generate a unique key. 

shmget() 

The above system call creates or allocates a shared memory segment. 

Synopsis 

int shmget(key_t key,size_tsize,intshmflg); 

Description 

key: It recognizes the shared memory segment. The key can be either an arbitrary value or 

one that can be derived from the library function ftok(). The key can also be IPC_PRIVATE, 

means, running processes as server and client (parent and child relationship) i.e., inter- 

related process communication. If the client wants to use shared memory with this key, then 

https://www.geeksforgeeks.org/inter-process-communication/


it must be a child process of the server. Also, the child process needs to be created after the 

parent has obtained a shared memory. 

Upon successful completion, shmget() returns an identifier for the shared memory segment. 

shmat(): 

The above system call performs shared memory operation for System V shared memory 

segment i.e., attaching a shared memory segment to the address space of the calling process. 

Before you can use a shared memory segment, you have to attach yourself 

to it using shmat(). 

Synopsis 

void *shmat (int shmid, void *shmaddr,int shmflg); 

Description 

shmid :Itis the identifier of the shared memory segment. This id is the shared memory 

identifier, which is the return value of shmget() system call. 

shmaddr : It is to specify the attaching address. If shmaddr is NULL, the system by default 

chooses the suitable address to attach the segment. If shmaddr is not NULL and SHM_RND 

is specified in shmflg, the attach is equal to the address of the nearest multiple of SHMLBA 

(Lower Boundary Address). Otherwise, shmaddr must be a page aligned address at which the 

shared memory attachment occurs/starts. 

shmflg: specifies the required shared memory flag/s such as SHM_RND (rounding off 

address to SHMLBA) or SHM_EXEC (allows the contents of segment to be executed) or 

SHM_RDONLY (attaches the segment for read-only purpose, by default it is read-write) or 

SHM_REMAP (replaces the existing mapping in the range specified by shmaddr and 

continuing till the end of segment). 

This call would return the address of attached shared memory segment on success and -1 in 

case of failure. To know the cause of failure, check with errno variable or perror() function. 

shmdt(): 

 

This system call performs shared memory operation for shared memory segment of detaching 

the shared memory segment from the address space of the calling process. 

When you’re done with the shared memory segment,  your  program should 

detach itself from it using shmdt(). 



Synopsis 

 

int shmdt(void *shmaddr); 

 

Description 

 

The argument, shmaddr, is the address of shared memory segment to be detached. The to-be- 

detached segment must be the address returned by the shmat() system call. 

This call would return 0 on success and -1 in case of failure. To know the cause of failure, 

check with errno variable or perror() function. 

shmctl() 

 

This system call performs control operation for a shared memory segment. 

 

when you detach from shared memory,it is not destroyed. So, to destroy 

shmctl() is used. 

Synopsis 

 

shmctl(int shmid,IPC_RMID,NULL); 

 

Description 

 

shmid: This is the identifier of the shared memory segment. This id is the shared memory 

identifier, which is the return value of shmget() system call. 

cmd:This is the command to perform the required control operation on the shared memory 

segment. 

Valid values for cmd are − 

 

IPC_STAT − Copies the information of the current values of each member of struct shmid_ds 

to the passed structure pointed by buf. This command requires read permission to the shared 

memory segment. 

IPC_SET − Sets the user ID, group ID of the owner, permissions, etc. pointed to by structure 

buf. 

IPC_RMID − Marks the segment to be destroyed. The segment is destroyed only after the last 

process has detached it. 



IPC_INFO − Returns the information about the shared memory limits and parameters in the 

structure pointed by buf. 

SHM_INFO − Returns a shm_info structure containing information about the consumed 

system resources by the shared memory. 

buf : Thus is a pointer to the shared memory structure named struct shmid_ds. The values of 

this structure would be used for either set or get as per cmd. 

This call returns the value depending upon the passed command. Upon success of IPC_INFO 

and SHM_INFO or SHM_STAT returns the index or identifier of the shared memory 

segment or 0 for other operations and -1 in case of failure. To know the cause of failure, 

check with errno variable or perror() function. 



a) Pipes 

ALGORITHM: 

Step 1: Start the program 

Step 2: Create a pipe using pipe() system call 

Step 3: Create a child process.If the child process is created successfully then write the 

message into the pipe otherwise goto step2 

Step 4: Read the message from the pipe and display the message 

Step 5: Stop the program 



SOURCE CODE: 

#include<stdio.h> 

#include <unistd.h> 

#include <sys/types.h> 

#include <sys/wait.h> 

#include <string.h> 

int main() 

{ 

intfd[2],child; 

char a[]=” Hello PEC\n”; 

pipe(fd); 

child=fork(); 

if(! child) 

{ 

 

 

 

 

} 

else 

{ 

 

 

 

 

 

} 

close(fd[0]); 

write(fd[1],a,strlen(a)); 

wait(0); 

 

 

 

 

close(fd[1]); 

read(fd[0],a,sizeof(a)); 

printf("\n\n The string retrieved from the pipe is %s",a); 

return 0; 

} 



b) FIFOs 

ALGORITHM: 

Step 1: Create two processes, one is fifowriter and another one is fiforeader. 

Step 2: Writer process performs the following − 

 Creates a named pipe (using system call mkfifo()) with name “MYFIFO”, if 

not created. 

 Opens the named pipe for write only purposes. 

 Writes the data into the FIFO 

Step 3: Reader process performs the following − 

 Opens the named pipe for read only purposes. 

 Reads the content from the FIFO and put in to the buffer. 

 Writes the content out from the buffer on the screen. 



SOURCE CODE: 

/* Filename: fifowrite.c */ 

#include <stdio.h> 

#include <sys/stat.h> 

#include <sys/types.h> 

#include <fcntl.h> 

#include <unistd.h> 

#include <string.h> 

 

#define FIFO_FILE "MYFIFO" 

int main() 

{ 

int fd; 

char buffer[80]=”WRITER DATA”; 

/* Create the FIFO */ 

mkfifo(FIFO_FILE, 0666); 

fd= open(FIFO_FILE, O_WRONLY); 

write(fd,buffer,sizeof(buffer)); 

close(fd); 

return 0; 

} 

 

/* Filename: fiforead.c */ 

#include <stdio.h> 

#include <sys/stat.h> 

#include <sys/types.h> 

#include <fcntl.h> 

#include <unistd.h> 

#include <string.h> 

 

#define FIFO_FILE "MYFIFO" 

int main() 

{ 



int fd1; 

charbufferr[80]; 

fd1=open(FIFO_FILE,O_RDONLY); 

read(fd1,buffer,sizeof(buffer)); 

printf(" has been sent by writer”); 

write(1,buffer,sizeof(buffer)); 

close(fd1); 

return 0; 

} 



OUTPUT: 

Step 1: First compile the program for writing message into the fifo. 

Step 2: Then run the program. 

Step 3: Now open another terminal and compile the program for reading the message from 

fifo. 

Step 4: Then run the program 

Output of the program for reading the message from the fifo 

WRITER DATA has been sent by writer 



C) Message Queues 

ALGORITHM: 

Step 1: Generate an IPC key by invoking the ftok function. A filename and ID are supplied 

while creating the IPC key. 

Step 2: Invoke the msgget function to create the message queue. The message queue is 

associated with the IPC key that was created in step1 

Step 3: Define a structure with two members, mtype and mesg. Set the value of mtype 

member to 1 

Step 4: Enter the message that’s going to be added to the message queue. The string that’s 

entered is assignedto the mesg member of the structure that was defined in step 3; 

Step 5: Invoke the msgsnd function to send the entered message in to the message queue 



SOURCE CODE: 

// Program for writing the message to the message queue 

#include<sys/types.h> 

#include<sys/ipc.h> 

#include<sys/msg.h> 

#inlude<stdio.h> 

#inlucde<string.h> 

#define MSGSIZE 255 

struct msgstruc 

{ 

long mtype; 

char mesg[MSGSIZE]; 

}; 

void main() 

{ 

int msqid,msglen; 

key_t key; 

struct msgstruc msgbuf; 

system(“touch messagefile”); 

if((key= ftok(“messagefile”,’a’))==-1) 

{ 

perror(“ftok”); 

exit(1); 

} 

if((msqid=msgget(key,0666|IPC_CREAT))==-1) 

{ 

perror(“msgget”); 

exit(1); 

} 

msgbus.mtype=1; 

printf(“Enter a message to add to message queue:”); 

scanf(“%s”,msgbuf.mesg); 

msglen=strlen(msgbuf.mesg); 



if(msgsnd(msqid,&msgbuf,msglen,IPC_NOWAIT)<0) 

perror(“msgsnd”); 

printf(“the message sent is %s\n”,msgbuf.mesg); 

return 0; 

} 



ALGORITHM: 

Step 1: Invoke the ftok function to generate the IPC key. The filename and ID are supplied 

while creating the IPC key. These must be the same as what were applied while generating 

the key for writing the message in the message queue. 

Step 2: Invoke the msgget function to access the message queue that is associated with the 

IPC key. The message queue that’s associated with this key already contains a message that 

we wrote through the previous program. 

Step 3: Define a structure with two members, mtype and mesg. 

Step 4: Invoke the msgrcv function to read the message from the associated message queue. 

The structure that was defined in step 3 is passed to this function. 

Step 5:The read message is then displayed on the screen. 



SOURCE CODE: 

// Program for reading a message from the message queue 

#include<sys/types.h> 

#include<sys/ipc.h> 

#include<sys/msg.h> 

#inlude<stdio.h> 

#inlucde<string.h> 

#inlcude<stdlib.h> 

#define MSGSIZE 255 

 

struct msgstruc 

{ 

long mtype; 

char mesg[MSGSIZE]; 

}; 

int main() 

{ 

int msqid; 

key_t key; 

struct msgstruc rcvbuffer; 

if((key= ftok(“messagefile”,’a’))==-1) 

{ 

perror(“ftok”); 

exit(1); 

} 

if((msqid=msgget(key,0666))<0) 

{ 

perror(“msgget”); 

exit(1); 

} 

if(msgrcv(msqid,&rcvbuffer,MSGSIZE,1,0)<0) 

{ 

perror(“msgrcv”); 



exit(1); 

} 

 

 

printf(“The message received is %s\n”,rcvbuffer.mesg); 

return 0; 

} 



OUTPUT: 

Step 1: First compile the program for writing message in to the queue. 

Step 2: Then run the program 

Output of the program for writing the message into the message queue 

Enter a message to add to message queue: GoodDay 

The message id GoodDay 

Step 3: Now open another terminal and compile the program for reading the message from 

the queue. 

Step 4: Then run the program 

Output of the program for reading the message from the message queue 

The message received id GoodDay 



d) SHARED MEMORY 

ALGORITHM: 

Step 1: Generate an IPC key by invoking the ftok function. A filename and ID are supplied 

while creating the IPC key. 

Step 2: Invoke the shmget function to create the shared memory. The shared memory is 

associated with the IPC key that was created in step1. 

Step 3: Invoke the shmat function to 

Step 4: Enter the message that’s going to be added to the shared memory. The string that’s 

entered is assigned to the str. 

Step 5: Invoke the shmdt function to 



SOURCE CODE: 

//Program for writing in to the shared memory 

#include<stdio.h> 

#include <sys/ipc.h> 

#include <sys/shm.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() 

{ 

char *str; 

int shmid; 

 

key_t key = ftok("sharedmem",'a'); 

if ((shmid = shmget(key, 1024,0666|IPC_CREAT)) < 0) { 

perror("shmget"); 

exit(1); 

} 

if ((str = shmat(shmid, NULL, 0)) == (char *) -1) { 

perror("shmat"); 

exit(1); 

} 

printf("Enter the string to be written in memory : "); 

gets(str); 

printf("String written in memory: %s\n",str); 

shmdt(str); 

return 0; 

} 



ALGORITHM: 

Step 1: Invoke the ftok function to generate the IPC key. The filename and ID are supplied 

while creating the IPC key. These must be the same as what were applied while generating 

the key for writing the message in the shared memory. 

Step 2: Invoke the shmget function to access the shared memory that is associated with the 

IPC key. The message queue that’s associated with this key already contains a message that 

we wrote through the previous program. 

Step 3: Invoke the shmat function to 

Step 4: Display the message that’s being written to the shared memory. 

Step 5: Invoke the shmdt function to 

Step 6: Invoke the shmctl function to 



SOURCE CODE: 

//Program for reading from the memory 

#include <stdio.h> 

#include <sys/ipc.h> 

#include <sys/shm.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() 

{ 

int shmid; 

char * str; 

 

key_t key = ftok("sharedmem",'a'); 

if ((shmid = shmget(key, 1024,0666|IPC_CREAT)) < 0) { 

perror("shmget"); 

exit(1); 

} 

if ((str = shmat(shmid, NULL, 0)) == (char *) -1) { 

perror("shmat"); 

exit(1); 

} 

printf("Data read from memory: %s\n",str); 

shmdt(str); 

shmctl(shmid,IPC_RMID,NULL); 

return 0; 

} 



OUTPUT: 

Step 1: First compile the program for writing message into the shared memeory. 

Step 2: Then run the program 

Output of the program for writing the message into the shared memory 

Enter the string to be written in memory: GoodDay 

String written in memory: GoodDay 

Step 3: Now open another terminal and compile the program for reading the message from 

the shared memory. 

Step 4: Then run the program 

Output of the program for reading the message from the shared memory 

Data read from memory: GoodDay 



EXPERIMENT 6 

 

 

OBJECTIVE 

Write C programs to simulate the following memory management techniques 

a) Paging b) Segmentation 

PAGING 

In computer operating systems, paging is one of the memory management schemes by which 

a computer stores and retrieves data from the secondary storage for use in main memory. In 

the paging memory-management scheme, the operating system retrieves data from secondary 

storage in same-size blocks called pages. Paging is a memory-management scheme that 

permits the physical address space a process to be noncontiguous. The basic method for 

implementing paging involves breaking physical memory into fixed-sized blocks called 

frames and breaking logical memory into blocks of the same size called pages. When a 

process is to be executed, its pages are loaded into any available memory frames from their 

source. 

SEGMENTATION 

Like Paging, Segmentation is also a memory management scheme. It supports the user’s view 

of the memory. The process is divided into the variable size segments and loaded to the 

logical memory address space. 

The logical address space is the collection of variable size segments. Each segment has 

its name and length. For the execution, the segments from logical memory space are loaded 

to the physical memory space.The address specified by the user contain two quantities 

the segment name and the Offset. The segments are numbered and referred by the segment 

number instead of segment name. This segment number is used as an index in the segment 

table, and offset value decides the length or limit of the segment. The segment number and 

the offset together generates the address of the segment in the physical memory space. 



ALGORITHM: 

Step 1: Read the logical address, page size and physical address. 

Step 2: calculate the number of pages and number of frames and display. 

Step 3: Create the page table with the page number page and page address. 

Step 4: Read the page number and offset value. 

Step 5: If the page number and offset value is valid, add the offset value with the address 

corresponding to the page number and display the result. 

Step 6: Display the page is not found or error message. 



SOURCE CODE: 

#include<stdio.h> 

#include<conio.h> 

#include<stdlib.h> 

main() 

{ 

int page_size,no_of_pages,no_of_frames,logical_add; 

int alloc[50],base[50],frame[50],page[50]; 

int i,f,n,physical_add,frame_sizes,pg_no,add,offset; 

int temp; 

int f1; 

clrscr(); 

printf("\n\t\t PAGING\n"); 

printf("\n\t Enter the logical address space:"); 

scanf("%d",&logical_add); 

printf("\n\t Enter the page size:"); 

scanf("%d",&page_size); 

printf("\n\t Enter the physical address space:"); 

scanf("%d",&physical_add); 

frame_sizes =page_size; 

no_of_pages=logical_add/page_size; 

no_of_frames=physical_add/frame_sizes; 

printf("\n\t Number of pages = %d",no_of_pages); 

printf("\n\t Number of frames = %d",no_of_frames); 

for(i=0;i<no_of_frames;i++) 

alloc[i]=0; 

for(i=0;i<no_of_pages;i++) 

{ 

temp=rand()%no_of_frames; 

while(alloc[temp]==1) 

temp=rand()%no_of_frames; 

alloc[temp]=1; 

frame[i]=temp; 



} 

printf("\n Page No \t Frame No \t Base address "); 

for(i=0;i<no_of_pages;i++) 

{ 

base[i]=frame[i]*page_size; 

page[i]=i; 

printf("%d\t %d\t %d\t",i,frame[i],base[i]); 

} 

printf("\n\t Enter the Page num and Offset : "); 

scanf(" %d %d",&pg_no,&offset); 

for(i=0;i<no_of_pages;i++) 

{ 

if(pg_no ==page[i]) 

{ 

add=base[i]+offset; 

f=1; 

break; 

} 

} 

if(offset>=page_size) 

printf("\n\t Trying to access other page"); 

else 

{ 

if(f==1) 

printf("\n\t Physical Address = %d",physical_add); 

else 

printf("\n\t Page not found"); 

getch(); 

} 

} 

} 



Enter the logical address space:500 

Enter the page size:100 

 

Enter the physical address space:1000 
 

 

Number of pages =5 

Number of frames=10 

Page No 

 

 

 

 

 

Frame No 

 

 

 

 

 

Base address 

0 6 600 

1 0 0 

2 2 200 

3 7 700 

4 5 500 

 

 

Enter the page number and offset: 3 4 

Physical address = 704 



ALGORITHM: 

Step 1: Read the segment numbers, limit address and base address of the segments. 

Step 2: Create the segment table with the segment number and segment details. 

Step 3: Read the logical address. 

Step 4: If the logical address value is valid, add the base address with the logical address 

and display the result as physical address. 

Step 5: Display the -1 for physical address if logical address is not valid. 



SOURCE CODE: 

#include<stdio.h> 

void main() 

{ 

int i,n,seg[20],lt[20],base[20],log[20],phy[20]; 

printf(“\n Enter the number of segments:”); 

scanf(“%d”,&n); 

for(i=0;i<n;i++) 

{ 

printf(“\n Enter the segment no of %d :”,i+1); 

scanf(“%d”,&seg[i]); 

} 

for(i=0;i<n;i++) 

{ 

printf(“\n Enter the limit address of %d :”,i+1); 

scanf(“%d”,&lt[i]); 

} 

for(i=0;i<n;i++) 

{ 

printf(“\n Enter the base address of %d :”,i+1); 

scanf(“%d”,&base[i]); 

} 

printf(“\n The segment no \t\t segment table \n”); 

for(i=0;i<n;i++) 

{ 

printf(“\n %d \t %d \t %d”,seg[i],lt[i],base[i]); 

printf(“\n”); 

} 

for(i=0;i<n;i++) 

{ 

printf(“\n Enter the logical no of %d :”,i+1); 

scanf(“%d”,&log[i]); 

} 

for(i=0;i<n;i++) 

{ 

if(log[i]<lt[i]) 



{ 

 

} 

else 

{ 

 

} 

} 

 

phy[i]=log[i]+base[i]; 

 

 

 

 

 

phy[i]=-1; 

printf(“\n Physical address”); 

for(i=0;<n;i++) 

{ 

printf(“\n %d”,phy[i]); 

} 

} 



OUTPUT : 

Enter the number of segments:5 

Enter the segment no of 1 :1 

Enter the segment no of 2 :2 

Enter the segment no of 3 :3 

Enter the segment no of 4 :4 

Enter the segment no of 5 :5 

Enter the limit address of 1 :5 

Enter the limit address of 2 :4 

Enter the limit address of 3 :6 

Enter the limit address of 4 :4 

Enter the limit address of 5 :7 

Enter the base address of 1 :20 

Enter the base address of 2 :15 

Enter the base address of 3 :5 

Enter the base address of 4 :28 

Enter the base address of 5 :50 

The segment no segment table 

1 5 20 

2 4 15 

3 6 5 

4 4 28 

5 7 50 

Enter the logical no of 1 :2  

Enter the logical no of 2 :3  

Enter the logical no of 3 :7  

Enter the logical no of 4 :5  

Enter the logical no of 4 :5  

Physical address  

22  

18  

-1  

-1  

55  

 


